Code:
Name:

Date:
Duration:

Number of pages
Aids:

Comments:

University of Agder
Faculty of Technology and Science

EXAM

DAT200
Computer graphics

03. desember 2009
0900 - 1300

8
Stationary

The weighting is specified in the header of each task

ENGLISH

TASK 1. (12%)

NB: You get + 1 point for correct answer, - /2 point for wrong answers.
(Write the answer on a separate sheet along with the rest of the paper.)
Please indicate whether you agree (Yes) or disagree (No) in the following statements:

Yes

2) | An LCD screen is based on the property that light is waves, and that
liquid crystals can change the light polarization.

Half toning is a powerful image-precision technique for the removal of
hidden lines and surfaces

¢) | Cohen Sutherland's algorithm for clipping lines can be used in both 2
and 3 dimensions.

Two rotations about the same axis in space (3D) are always
commutative.

€) | A Hermite curve will usually satisfy C' continuity between the curve
segments.

f) | We have a total of four basic transformations that are called translation,
mirroring, scaling and rotation.

g) | A matte material has specular reflection on a smaller area than a shiny
material.

h) | With perspective projections objects farther away from the viewer looks
bigger than objects close to the viewer.

i) | In an Octree representation of a 3D object, rotations about the main axes
with an angle of 90 degrees are easy to implement.

j) | Using antialiasing we can achieve faster rendering of lines on a
computer screen.

k) |InJava, a class definition can contain multiple constructors.

) | Using a Mouse Adapter object in Java, we can limit ourselves to write
the code for the methods that do something in the Mouse Listener
interface.

TASKS 2. TRANSFORMATIONS (14%)

a) The three matrixes below represent a transformation of points when we use homogeneous
coordinates: '

1 O‘ ‘cosf -—sinf
0 0
0 0

(D 2) 3)

Describe the transformation that each matrix (1-3) above represents.

O = OO
—_— 0 O 9

0
sinf cosf O
1
0

—_0 O O
S O O U
O O nn ©
S n © O
—_0 O O

0 1
0 0
0 0

b) Why do we use homogenous transformation matrixes?

c) Show the transformation sequence of the 4x4 homogeneous transformation matrixes (3D
transformations) that transforms a line with end points (1,1,1) and (5,5,5) to a line with end
points (0,0,0) and (1,0,0). It is not necessary to multiply the matrixes, but the sequence
should be set up in the correct order.

TASK 3. HIDDEN SURFACES AND INTENSITIES (12%)

a) Write a short principle description of the z-buffer algorithm for removing surfaces. Enter in
the description of the algorithm also what kind of coherence that the algorithm uses.

b) Is the z-buffer algorithm an object-precision algorithm and/or an image-precision algorithm?
Enter the advantages and disadvantages of the algorithm.

¢) Enter the main difference between the two shading algorithms Gouraud and Phong. Why
does Phong render specular reflection better than Gouraud?

TASK 4. CLIPPING. PROJECTIONS., CURVES AND SOLIDS (28%)

Sutherland and Hodgman's polygon clipping algorithm uses a "divide and conquer" strategy.

a) Explain briefly the basic principle behind this algorithm.

Given the following polygon:

g)

Explain how the Sutherland and Hodgman's polygon-clipping algorithm is used to clip the
polygon against the specified clipping window. Make particular account of how and where
the intersection between the polygon and the cutting edges occurs.

What do we understand with a three-point perspective projection?

To which class of projections does isometric projection belong, and what characterizes this
type of projection?

Calculate the projection of the point (30,30,40) into the xy-plane when the projection point is
in (0,0, -40).

Bezier curves have the property that every part of a curve segment lies within the convex hull
defined by the four control points of the curve segment. Why is this the case? Are there other
types of cubic parametric curves that also have this property? How can this property be
utilized in a line-clipping algorithm to make it more effective?

Natural cubic splines have C°, ¢! and C? continuity, which make them smoother than Hermite
curves and cubic Bezier curves. The spline also interpolates the control points, which makes
them easier to control than B-Splines. Yet these are used to a limited extent in for example
professional CAD systems. Why?

TASK S. 3D-STUDIO (16%)

We want to model a door handle that is
produced in polished brass with the grip
section of pine (The parts of a door handle is
specified in the picture to the right). The
door handle is later to be used in Task 6 on a
door, which consists of the door body
(usually just called the door), the door
handle (“Héndtak” in Norwegian) with plate
and key plate (“Skilt” and “Nekkelskilt” in
Norwegian), as well as hinges and the frame %

that the door is in. The door can rotate so Nakkelskilt
that it can be opened and the door handle
can also rotate.

a) Explain briefly the principle and how to
go forward in 3D Studio to model the
door handle (Please disregard the plate
and the key plate). Take your own
assumptions if you are unsure of the
shape of the object.

b) Specify the type of material you would
choose in 3D Studio for the polished
brass and the grip section (pine).

TASK 6. JAVA (20%)

We will now load (part a below) and then animate (part b below) the door from task 5 in Java3D.

The door consists of three parts:

1) Door handle (where only the part to rotate is part of the door handle)

2) Door body, including the static part of the door handle (the plate + key plate))
3) Frame (In this task we disregard the hinges).

The door can be opened and the door handle can be rotated. Assume that the objects Handle, Door
and Frame are modelled in 3Dstudio and stored as files with the same name.

a) Write the routine in a new class Door who put together the actual object (corresponding to
public Branch Group createSceneGraph () in Vindmolle.java). Use your own assumptions
regarding the dimensions, axis directions, distances, etc. You shall not take into account that
the door or door handle can rotate.

b) We will now have the possibility to open the door and rotate the door handle. Draw in a
scene graph the Branch Group, with appropriate explanations, that the routine (Public Branch
Group createSceneGraph ()) now returns.

VEDLEGG 1

package Vindmolle;

import java.awt.”;

import java.awt.event.”;

import javax.media.j3d.*,

import javax.vecmath.*;

import javax.swing.*;

import com.mnstarfire.loaders3d.Inspector3DS;

class VindmollePanel extends JPanel implements ActionListener

{

Button minus = new Button("+");
Button pluss = new Button("
Tastaturtrykk t;

Alpha rotationAlpha;

public VindmollePanel(}
{

setLayout(new BorderLayout());

GraphicsConfigTemplate3D template = new GraphicsConfigTemplate3D();

template.setSceneAntialiasing(GraphicsConfigTemplate3D.REQUIRED);

1l Get the GraphicsConfiguration that best fits our needs.
GraphicsConfiguration gcfg =
GraphicsEnvironment.getLocalGraphicsEnvironmenty().
getDefaultScreenDevice().getBestConfiguration(template);

Canvas3D c = new Canvas3D(gcfg);
add("Center", c);
Panel p =new Panel();

p.add(minus);
p.add(pluss);
add("North",p);

pluss.addActionListener(this);
minus.addActionListener(this);

// Create a simple scene and attach it to the virtual
/] universe

BranchGroup scene = createSceneGraph();
UniverseBuilder u = new UniverseBuilder(c);
u.addBranchGraph(scene);

public BranchGroup createSceneGraph() {

/I Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();

1/ Create the TransformGroup node and initialize it to the

/I identity. Enable the TRANSFORM_WRITE capability so that
/I our behavior code can modify it at run time. Add it to

/1 the root of the subgraph.

TransformGroup TGBlad1 = new TransformGroup();

TransformGroup TGBlad2 = new TransformGroup();

TransformGroup TGRotator = new TransformGroup();
TGRotator.setCapab ﬁﬁm:wﬁoqao8:n.>_._.O<<|._.m>zm_uom_<_l<<m_._.mx
objRoot.addChild(TGRotator);

/I Add the fundament and the base in the scene graph

Inspector3DS loader = new Inspector3DS("c:/temp/Vindmolle/fundament.3ds"); // constructor

loader.parselt(); // process the file

TransformGroup fundament = loader.getModel();
objRoot.addChild(fundament);

/1 get the resulting 3D model as a Transform Group with Shape3Ds as children

/I Create a new Behavior object that will perform the
// desired operation on the specified transform and add
I/ it into the scene graph.

Transform3D zAxis = new Transform3Dy();
zAxis.rotX(Math.PI/2);
rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE,0, 0,
4000,0,0,0,0, 0);
Rotationinterpolator rotator = new Rotationinterpolator(
rotationAlpha, TGRotator, zAxis, 0.0f, (float) Math.PI1*2.0f);
BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0),200.0);
rotator.setSchedulingBounds(bounds);
TGRotator.addChild(rotator);

/I Add a Behavior that accepts keyboard input
Tastaturtrykk t = new Tastaturtrykk(rotationAlpha);
TGRotator.addChild(t);

// Hent inn bladene

Inspector3DS loader2 = new Inspector3DS("c:/temp/Vindmolle/blad.3ds"); // constructor
loader2.parselt(); // process the file

TransformGroup blad1 = loader2.getModel();

Inspector3DS loader3 = new Inspector3DS("c:/temp/Vindmolle/blad.3ds"); // constructor
loader3.parselt(); // process the file

TransformGroup blad2 = loader3.getModel();

Inspector3DS loader4 = new Inspector3DS("c:/temp/Vindmolle/blad.3ds"); // constructor

loader4.parselt(); // process the file
TransformGroup biad3 = loader4.getModel();

TGRotator.addChild(blad1);

/! Add the blades and rotate them
Transform3D zAxis2 = new Transform3D();

zAxis2.rotX(Math.P1/2);
zAxis2.rotZ(2.0*Math.PI/3);

TGBlad1.setTransform(zAxis2);
TGBlad1.addChild{blad?2); -

TGBlad2.setTransform(zAxis2);
TGBlad2.addChild(blad3);

TGBlad2.addChild(TGBlad1);
TGRotator.addChild(TGBlad2);

return objRoot;

public void actionPerformed(ActionEvent e)
{
long oldvalue= rotationAlpha.getincreasingAlphaDuration();
String kommando=e.getActionCommand();
if (kommando=="+")
{
rotationAlpha.setincreasingAlphaDuration(oldvalue/2);
}

else if (kommando=="-"

{

rotationAlpha.setincreasingAlphaDuration(oldvalue*2);

}
} // End actionPerformed

class VindmolleFrame extends JFrame
{

public VindmolleFrame()

{
addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent e)
{ System.exit(0); }
I3}

setSize(400, 400);
setTitle(getClass().getName());

Container contentPane = getContentPane();
contentPane.add(new VindmollePanel());

public class Vindmolle

{

public static void main(String args[])

{
JFrame f = new VindmolleFrame();
f.setSize(500,500);
f.show();

}
}

package Vindmolle;

import java.awt.”;

import java.awt.event.*;

import javax.media.j3d.*;

import javax.vecmath.”;

public class UniverseBuilder extends Object {
/I User-specified canvas

Canvas3D canvas;

/] Scene graph elements to which the user may want access

VirtualUniverse universe;
Locale locale;
TransformGroup vpTrans;
View view;

public UniverseBuilder(Canvas3D c) {
this.canvas = ¢;

// Establish a virtual universe that has a single

I hi-res Locale

universe = new VirtualUniverse();

locale = new Locale(universe);

/I Create a PhysicalBody and PhysicalEnvironment object
PhysicalBody body = new PhysicalBody();

PhysicalEnvironment environment =
new PhysicalEnvironment();

// Create a View and attach the Canvas3D and the physical
// body and environment to the view.

WakeupOr keyCriterion;
view = new View();

view.addCanvas3D(c); public Tastaturtrykk(Alpha alpha)
view.setPhysicalBody(body); {
view.setPhysicalEnvironment(environment); this.alpha=alpha;
view.setBackClipDistance(500); BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 200.0);
this.setSchedulingBounds(bounds);
// Create a BranchGroup node for the view platform }
BranchGroup vpRoot = new BranchGroup(); public void initialize()
{
/I Create a ViewPlatform object, and its associated keyEvents = new WakeupCriterion[1];
/I TransformGroup object, and attach it to the root of the keyEvents[0]=new WakeupOnAWTEvent(KeyEvent.KEY_PRESSED),
// subgraph. Attach the view to the view platform. keyCriterion = new WakeupOr(keyEvents);
wakeupOn (keyCriterion);
Transform3D t = new Transform3D(); }

Transform3D s = new Transform3D();
public void processStimulus (Enumeration criteria)

t.rotY(Math.Pl/4); {
s.set(new Vector3f(0.0f, 0.0f, 200.0f)); WakeupCriterion wakeup;
t.mul(s); AWTEvent[] event;
s.rotX(-Math.PI1/32), intid;
t.mul(s); chark;
ViewPlatform vp = new ViewPlatform(); while (criteria.hasMoreElements()) {
vpTrans = new TransformGroup(t); wakeup = (WakeupCriterion) criteria.nextElement();
vpTrans.addChild(vp); if (wakeup instanceof WakeupOnAWTEvent) {
vpRoot.addChild(vpTrans); event = ((WakeupOnAWTEvent)wakeup).getAWTEvent();
view.attachViewPlatform(vp); for (int i=0; i<event.length; i++) {
id = eventfi].getiD();
/I Attach the branch graph to the universe, via the if (id == KeyEvent.KEY_PRESSED) {
/I Locale. The scene graph is now live! k = ((KeyEvent)event[i]).getKeyChar();
fong oldvalue= alpha.getincreasingAlphaDuration();
locale.addBranchGraph(vpRoot); if (k=="+")
} {
, alpha.setincreasingAlphaDuration(oldvalue/2);
public void addBranchGraph(BranchGroup bg) { System.out.printin("+");
locale.addBranchGraph(bg); }
} else if (k=="-")
} {
) alpha.setincreasingAlphaDuration(oldvalue*2);
package Vindmolle; System.out.printin("-");
}
import java.awt.”; Y/ End if
import java.awt.event.”; }// End for
import java.util.*; Y/ Endif
import javax.media.j3d.”; } /1 End while
import javax.vecmath.”; wakeupOn (keyCriterion);

} // End processStimulus
} I/ End class Tastaturtrykk

public class Tastaturtrykk extends Behavior

{
Alpha alpha;
WakeupCriterion]] keyEvents;

